首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100630篇
  免费   7973篇
  国内免费   3378篇
  2023年   1541篇
  2022年   1429篇
  2021年   3178篇
  2020年   3500篇
  2019年   4677篇
  2018年   4025篇
  2017年   2879篇
  2016年   2835篇
  2015年   3610篇
  2014年   6502篇
  2013年   7806篇
  2012年   4743篇
  2011年   6139篇
  2010年   4585篇
  2009年   5234篇
  2008年   5380篇
  2007年   5354篇
  2006年   4891篇
  2005年   4249篇
  2004年   3781篇
  2003年   3023篇
  2002年   2678篇
  2001年   1801篇
  2000年   1488篇
  1999年   1299篇
  1998年   1243篇
  1997年   1012篇
  1996年   990篇
  1995年   1091篇
  1994年   1019篇
  1993年   836篇
  1992年   864篇
  1991年   727篇
  1990年   655篇
  1989年   558篇
  1988年   489篇
  1987年   465篇
  1986年   383篇
  1985年   545篇
  1984年   717篇
  1983年   470篇
  1982年   580篇
  1981年   459篇
  1980年   373篇
  1979年   368篇
  1978年   286篇
  1977年   253篇
  1976年   220篇
  1974年   143篇
  1973年   181篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
993.
Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.  相似文献   
994.
Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+] i mobilization. In the present study, hypoxia exposure of rat's model was established. Two-pore segment channels (TPCs) silencing was achieved in rats' models by injecting Lsh-TPC1 or Lsh-TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP-activated [Ca2+]i shows to be mediated via two-pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia-induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh-TPC1 or Lsh-TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP-AM-induced PASMC proliferation and [Ca2+]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP-AM- induced [Ca2+]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.  相似文献   
995.
Circular RNA is a newly discovered member of non-coding RNA (ncRNA) and regulates the target gene by acting as a micro-RNA sponge. It plays vital roles in various diseases. However, the functions of circular RNA in non-small cell lung cancer (NSCLC) remain still unclear. Our data showed that circ-WHSC1 was highly expressed in NSCLC cells and tissues. Both in vitro and in vivo experiments showed that circ-WHSC1 promoted NSCLC proliferation. circ-WHSC1 also promoted the migration and invasion of lung cancer cells. Through bioinformatic analysis and functional experiments, we showed that circ-WHSC1 could act as a sponge for micro-RNA-7 (miR-7) and regulate the expression of TAB2 (TGF-beta activated kinase one binding protein two). Inhibition of the circ-WHSC1/miR-7/TAB2 pathway could effectively attenuate lung cancer progression. In summary, this study confirmed the existence and oncogenic function of circ-WHSC1 in NSCLC. The research suggests that the circ-WHSC1/miR-7/TAB2 axis might be a potential target for NSCLC therapy.  相似文献   
996.
In this study, we investigated the ability of curcumin alone or in combination with GLUT1 siRNA to radiosensitize laryngeal carcinoma (LC) through the induction of autophagy. Protein levels in tumour tissues and LC cells were measured by immunohistochemistry and Western blotting. In vitro, cell proliferation, colony formation assays, cell death and autophagy were detected. A nude mouse xenograft model was established through the injection of Tu212 cells. We found that GLUT1 was highly expressed and negatively associated with autophagy-related proteins in LC and that curcumin suppressed radiation-mediated GLUT1 overexpression in Tu212 cells. Treatment with curcumin, GLUT1 siRNA, or the combination of the two promoted autophagy. Inhibition of autophagy using 6-amino-3-methypourine (3-MA) promoted apoptosis after irradiation or treatment of cells with curcumin and GLUT1 siRNA. 3-MA inhibited curcumin and GLUT1 siRNA-mediated non-apoptotic programmed cell death. The combination of curcumin, GLUT1 siRNA and 3-MA provided the strongest sensitization in vivo. We also found that autophagy induction after curcumin or GLUT1 siRNA treatment implicated in the AMP-activated protein kinase-mTOR-serine/threonine-protein kinase-Beclin1 signalling pathway. Irradiation primarily caused apoptosis, and when combined with curcumin and GLUT1 siRNA treatment, the increased radiosensitivity of LC occurred through the concurrent induction of apoptosis and autophagy.  相似文献   
997.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
998.
999.
IκB kinase (IKK) complex, the master kinase for NF-κB activation, contains two kinase subunits, IKKα and IKKβ. In addition to mediating NF-κB signaling by phosphorylating IκB proteins during inflammatory and immune responses, the activation of the IKK complex also responds to various stimuli to regulate diverse functions independently of NF-κB. Although these two kinases share structural and biochemical similarities, different sub-cellular localization and phosphorylation targets between IKKα and IKKβ account for their distinct physiological and pathological roles. While IKKβ is predominantly cytoplasmic, IKKα has been found to shuttle between the cytoplasm and the nucleus. The nuclear-specific roles of IKKα have brought increasing complexity to its biological function. This review highlights major advances in the studies of the nuclear functions of IKKα and the mechanisms of IKKα nuclear translocation. Understanding the nuclear activity is essential for targeting IKKα for therapeutics.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号